
Computational capacity of  time-recurrent networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 2539

(http://iopscience.iop.org/0305-4470/35/11/302)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 02/06/2010 at 09:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 2539–2554 PII: S0305-4470(02)30145-8

Computational capacity of time-recurrent networks

S A Vakulenko

Institute for Problems of Mechanical Engineering, Russian Academy of Science, 199178, VO,
Bolshoj pr. 61, Saint Petersburg, Russia

Received 23 October 2001, in final form 30 January 2002
Published 8 March 2002
Online at stacks.iop.org/JPhysA/35/2539

Abstract
Time-recurrent networks are considered. Synaptic plasticity is defined by a
simple Hebb rule. It is well known that this Hebbian mechanism can support
learning and memory.

We show that this plasticity is a computational instrument with large
possibilities. In particular, the synaptic matrix can store different information,
both dynamic and static. For example, the network can perform the Fourier
and wavelet transformations and calculate probability distributions of unknown
parameters. These networks can analyse and identify dynamics, calculate
likelihood, study autoregression etc. They can resolve even more sophisticated
problems, for example decoding fractal images.

PACS numbers: 05.90.+m, 02.50.−r, 87.10.+e, 87.18.Su, 89.75.Hc

1. Statement of problem. Main results

1.1. Description of model

To try to understand brain function, various models have been proposed. The important impetus
in neural network research is due in part to the paper of John Hopfield [1]. In this paper he
presented a model of neural computation that is based on the interaction of neurons. It can be
used as an associative memory device [1] or a noise filter [2], or for optimization problems [3].

The aim of this paper is to consider time-recurrent networks based on the Hopfield model
and possessing large computational capacities. These networks can support main fundamental
statistical and computational algorithms.

Let us consider the following Hopfield model with discrete neuron states xi(t) ∈
{0, 1}, t = 0, h, . . .:

xi(t + h) = σ

( N∑
j=1

Kijxj (t)− θi

)
, i = 1, 2, . . . , N, (1.1)

where N is the number of neurons in the network, θi are thresholds, h is a time delay, Kij is a
synaptic matrix and σ is the step function

σ(z) = 1 (z > 0), σ (z) = 0 (z � 0). (1.2)
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To simplify notation, let us introduce vectors x = (x1, . . . , xN) and Ki =
(Ki1,Ki2, . . . , KiN), then equation (1.1) takes the form

xi(t + 1) = σ(Kix(t)− θi). (1.1a)

We are going to study computational capacities of a global network consisting of many local
units (1.1). These local networks can be connected through their thresholds θi(t). Suppose
there exist local networks of two types. The networks of the first type perform ‘preprocessing’
while the networks of the second type store information in their synaptic matrices. These
networks form a ‘processor’. One can interpret the processor as a primitive model of cortex
and the ‘preprocessor’ as an analogue of multilayered networks treating input signals.

Let us describe some natural restrictions to synaptic matrices of the preprocessing and
processing parts. Experimental data show that the entries of the synaptic matrix take values
from a discrete set. The idea that the entries Kij have only a limited number of stable states
began to develop as an alternative, more realistic description of the learning process [4, 5].

We shall suppose that for the ‘preprocessing’ part the synaptic efficacies can take three
values: 0 (no connection), λ > 0 (ith neuron activates j th neuron) and −λ < 0 (ith neuron
inhibits j th neuron). Another natural restriction is Kii = 0. We assume

Kij ∈ V3 = {0, λ,−λ}, Kii = 0 (1.3)

where i, j = 1, 2, . . . , N and the value λ can vary depending on the local units.
We show that even under restrictions (1.3), preprocessors (1.1) possess two key properties:

(A) they can make logical operations (‘and’, ‘or’, ‘not’) and approximate any vector output;
(B) they can generate a large class of stochastic, periodic and chaotic dynamics and fractal

patterns.

The case of symmetrical K has been studied analytically [1,6–8]; asymmetrical networks
have been investigated mainly by computer simulations [9–12].

As for the processor, we assume that either Kij = 0 (no connection) or Kij = λ > 0 (see
the next section).

1.2. Hebb rule

We assume that the network is organized as follows. There exists an auxiliary part of the
network which is responsible for filtration of input signals (for instance, visuals), for generation
of some complicated patterns, time signals and auxiliary calculations. Another part of network
(the processor) works by synaptic plasticity and supports memory and learning.

It is widely believed that synaptic plasticity is actually the basis underlying learning and
memory. The location of storage, the engram of learning and memory must be found among
those synapses which support changes in synaptic efficiency. A neuronal activity changes
synaptic strength by long-term potentiation (LTP, see review in [13]) and long-term depression
(LTD, see [14]). Beginning with seminal works [15] and [16] (who proposed a coincidence-
detection rule in which the synapse linking two cell is strengthened if the cells are active at
same time), many learning rules have been suggested (see for example [1, 2, 17]).

Recently the idea that synaptic efficacies have some stable states and stimulus arriving at
the network provokes transitions between these discrete states has been developed to explain
the learning process [18–20]. [21] described a molecular model of the synapse bistability.

Here we use a Hebb rule proposed by [4]. Suppose that, in the processor, the synaptic
efficacies take only two stable values Kij = 0 and λ. Let us denote ξ(t) = xi and η(t) = xj
states of postsynaptic and presynaptic neurons respectively at the moment t where t = 0, 1, . . . .
The following transitions can occur:
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(P) if K = Kij = 0 then K → λ with a probability a(ξ, η) = q+ρ(η, ξ) (potentiation);
(D) if K = λ then K → 0 with a probability b(ξ, η) = q−ρ̃(η, ξ) (depression).

We suppose that ρ = 1 if and only if ξ = 1 and η = 1. In contrast, ρ̃ = 1 if and only if ξ
and η are different. Analytically,

ρ(η, ξ) = ηξ, ρ̃(η, ξ) = uη(1 − ξ) + v(1 − η)ξ, (1.4)

where u, v ∈ [0, 1]. This Hebb rule depends on the parameters q+, q−, u, v. We shall call
this rule the (P)–(D) Hebb one. If the synaptic efficacies are discrete, this rule is simplest,
consistent with experimental data and basic neural concepts [13–16].

1.3. Main results

Using some results of [4] and new approaches, we show the following (see sections 3.1 and 3.2).

(Ia) Given input y(t), the network can calculate so-called z-transformation defined by

ŷ(t, z) =
∑

τ=0,1,...

y(t − τ)zτ . (1.5)

(Ib) The network can fulfill the discrete wavelet transform defined by

ŷ(k) =
∑
t

y(t)�k(t) (1.6)

where �k is a special basis consisting of functions localized in t .

These transformations play a fundamental role in signal processing.

(II) The Hebb rule allows us to find important dynamic information. For example, let us
observe time series y(t) = ȳ(t) + e(t) defined by a dynamical system with noise e(t).
Our aim is to consistently recover a signal ȳ(t). This is the noise removing problem which
has been discussed in a number of works (see [22,23] among others). Recently Lalley [22]
showed that, in general, only averaged information on dynamics can be recovered. We
show how our processor can find this information (see section 5).

(III) Networks (1.1) can effectively perform main statistical procedures, for example calculation
of likelihoods and solution of regression and autoregression problems, or finding empirical
distributions of unknown parameters (see section 3). The synaptic efficacies have, in this
context, a fundamental probabilistic interpretation.

(IV) This (P)–(D) Hebb rule is flexible enough: this rule can be reduced to classical ones [1,2]
working for associative memory devices and noise filters (section 4).

(V) Beginning with the pioneering ideas of Kolmogorov, Solomonoff, Loveland et al
(see [24–26], also [27] for a review), the algorithmic approach to information theory
develops, playing an important role in data compression problems.

To demonstrate that these networks can be a powerful tool for information compression,
we show that the well known algorithm of fractal image recognition (see [29, 30]) can be
implemented in our model (section 6). It is a more sophisticated problem than the previous
ones and mathematical details can be found in the appendix.

This list can probably be continued.
One can formulate a hypothesis that the (P)–(D) Hebb rule [4] is a basic instrument

sufficient to perform main known algorithms important for key biological functions such as
signal processing, recognition, memory, data compression etc. This is possible only due to a
combination of this rule with powerful preprocessing.
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The biological plausibility of this model is obvious. It is well known that visual signals pass
many layers before entering the cortex and, actually, biological preprocessing is a complicated
procedure (see [28] for details).

Our models for the preprocessor and the processor are simplest consistent with the
hypothesis on the discreteness of the synaptic efficacies. We shall not discuss here additional
possibilities that can be obtained by a feedback between the preprocessor and the processor
(an interesting idea proposed by the referee of this paper). Nonetheless, there is no doubt that
this feedback must exist.

To conclude this introduction, let us note that here our goal is not to construct most
computationally efficient schemes but to show that main known algorithms can be implemented
in a biologically plausible and relatively simple model.

2. Some capacities of preprocessor and auxiliary relations

We formulate here the known results of multilayered network theory [32–34] and show that it
holds under condition (1.3). We also recall some results [4] useful below.

2.1. Approximation of arbitrary 0–1 outputs

In this section we show that three-layered networks (1.1) satisfying (1.3) can solve any
classification problems and approximate any vector outputs.

Denote by χA the characteristic function of a bounded subset A of Rn. (Recall that
χA(q) = 1 if q ∈ A and χA(q) = 0 otherwise.) Let B(a, b) be the box in Rn defined by
B(a, b) = {q : ai < qi < bi}.

First let us observe that the characteristic function χB of any boxB(a, b) can be calculated
by a neural network consisting of two layers satisfying restriction (1.3).

To show this, we use the fact that our network can perform the logical operation ‘and’.
Namely, let us set

χB(q) = σ

(
λ

n∑
i=1

σ(qi − ai) + λ
n∑
i=1

σ(bi − qi)− θ

)
, θ = λ

(
2n− 1

2

)
. (2.1)

This formula can be interpreted as follows. At the moment t an input signal q(t) enters n
independent neurons of the first layer with states xi, x̃i . As a result, at time t + h their states
become xi = σ(qi − ai), x̃i = σ(qi − bi). The output of the first layer is an input for a single
neuron of the second layer. Suppose that the summation Kix takes time h; then the procedure
defined by (2.1) takes time 2h. Here we introduce the factor λ to satisfy (1.3). An important
detail: in general, we cannot set λ = 1 (see the next section).

Let us show now that the three-layered networks (1.1) (satisfying (1.3)) can approximate
any 0–1 outputs χB(q) where B are arbitrary measurable bounded sets. For two bounded
subsets B1 and B2 of Rn, let us define the distance dist(B1, B2) between them by the integral∫ |χB1 − χB2 | dnq.

Given B ⊂ Rn, let us construct a special neural network as follows. For any δ > 0, one
can find a set Bδ,N which is an union of the boxes Bk = B(ak, bk) (where k = 1, 2, . . . , N)
and such that Bδ,N approximates B: dist(B, Bδ,N) < δ.

Let us consider now a network consisting of N neurons σk where k = 1, 2, . . . , N . The
state of the kth neuron is defined by

σk = χBk (q) (2.2)

where, in turn, χBk can be calculated by a two-layered network (see (2.1)).
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Let us use now the logical operation ‘or’:

χBδ,N (q) = σ

(
λ

N∑
k=1

σk(q)− λ

2

)
. (2.3)

The right-hand side of (2.3) defines a three-layered network where each layer satisfies
condition (1.3). The third layer consists of a single neuron that summarizes outputs of the
second layer. Equation (2.3) shows that, even under restriction (1.3), the networks solve any
classification problems.

2.2. Approximation of arbitrary vector output

Consider a continuous vector function f(q) defined on a bounded subset B of Rn. This
function can be approximated by a linear combination of the characteristic functions. Namely,

|f(q)− fN(q)| < δ, q ∈ B (2.4)

where the ith component f iN of the vector function fN is defined by

f iN(q) =
N∑
j=1

f ij χBj (q). (2.5)

Let us calculate fN using a three-layered network subjected to (1.3) where the first two layers
generate sigmoidal signals, whereas the third (consisting of n neurons) generates continuous
signals θ̃i .

To this end, we put

θi(q) = λ

N∑
j=1

M∑
k=1

Rijkσjk(q), (2.6)

where N is taken from (2.5), a numberM is large enough and the sigmoids σjk are defined by
the relations σjk = χBj . Notice that these sigmoids can be calculated by means of two-layered
networks (see (2.1)–(2.3)) and moreover (this is important) they do not depend on the index k.

Now we adjust coefficients Rijk by the following stochastic procedure. For f ij > 0,
Rijk = 1 with a probability pji and Rijk = 0 with the probability 1 −pji . Similarly, if f ij < 0,
Rijk = −1 with the probability pji and Rijk = 0 with the probability 1 − pji . Then, using the
law of large numbers, we obtain that the mathematical expectation 〈Rjk〉 → ±pji asM → ∞.
To complete our procedure, we choose pij , λ and M such that λMpij = |f ij |. Finally, we see
that the three-layered networks with discrete efficacies (1.3) can simulate any maps q → F (q)

but use a larger number of neurons than in the case of continuous synapses.
Notice that, in general, λ �= 1. In fact, the number M must be large, pij � M−1 and

f ij = O(1), thus λ is small.

2.3. Generation of random signals and complicated dynamics

Different algorithms are based on white noisesX(t). Using the previous ideas one can generate
the noise X(t) with the prescribed mean and the deviation δ ≡ const. It is natural to assume
that in the network there is some white noise S(t). To obtainX, the network performs a linear
map S → c1 + c2S = X.

Now let us describe the construction of a recurrent network generating dynamics close
to a given iterative dynamics q(t + 1) = F (q(t)). (It is well known that this dynamics can
be periodic and even chaotic, see [35].) First, using results of section 2.3, we construct the
three-layered network generating a map sufficiently close to q → F (q). This forward network
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can be transformed to a time-recurrent one generating the prescribed dynamics. To do this,
we suppose that the third layer transmits the output again to the first layer (this is based on
formula (2.6)). We obtain then a time-recurrent network with iterative dynamics. Each iteration
takes time 4h. The synaptic matrix K and the thresholds θ of this network, in general, depend
on the map K = K(F ), θ = θ(F ).

This construction can be essentially improved (see the appendix). A great network with
a fixed synaptic matrix can generate a number of different dynamics depending only on the
thresholds θ . To obtain given dynamics, we adjust an appropriate threshold. This property
can be applied to compression of visual information (see section 6 and the appendix).

Finally, we conclude that our networks can generate different periodic and chaotic signals.

2.4. Probability distribution of synaptic efficacy

Here we describe results of [4] useful below. Consider synapse ij . For brevity we omit the
indices and denote by ξ(t) and η(t) the states of the presynaptic and the postsynaptic neurons
respectively and Kij = K(t) the synaptic efficacy at time t . The evolution of K(t) is defined
by a Markov chain with the two states, 0 and λ > 0. The corresponding 2 × 2 transition
matrix M has the entries m11 = 1 − a(t),m12 = a(t),m21 = b(t),m22 = 1 − b(t), where
a(t) = a(η(t), ξ(t)), b(t) = b(η(t), ξ(t)). Denote by G(T ) the probability of the synapse
being in the excited state. One can obtain [4] the following formula:

G(T ) = λ

T∑
t=1

a(t)

T∏
s=t+1

γ (s) + e(T ), γ (s) = 1 − a(s)− b(s), (2.7)

where e(T ) is an exponentially small (as T → ∞) correction depending on probabilities of
the initial states.

2.5. Search for maximum (minimum)

Let us describe a preprocessor making a fast random search for the maximum of some function
f (y), where y ranges over a bounded domain B in Rny . Consider m two-layered networks
generating output signals ξk ∈ {0, 1}, k = 1, 2, . . . , m by

ξk = σ

(
λ

m∑
i=1

σ(θk − f (yi ))− λ
(
m− 1

2

))
. (2.8)

Here the inputs are vectors yi ∈ B and numbers θk . The random search can be organized as
follows. At each search step, one takes a random set consisting ofm values yi from B and for
each k one puts θk = f (yk) + ε, where ε is small. Then ξk = 1 if and only if f (yk) > f (yi )
for all i �= k: the neuron fired corresponds to an input giving the maximum. One step of such
a search takes the time 2h.

We see that this non-iterative method is easy to implement in a parallel neural architecture
and it is well adapted to online processing if the dimension ny is relatively small, say, ny < 10.
We shall not discuss here more sophisticated algorithms of maximization.

3. Some computational possibilities of the network

3.1. Computation of z-transformation of signal

First we describe a linear representation of a continuous signal S(t) by a set of 0–1 signals.
Suppose the signal S(t) fires an ith synapse ηi by the law ηi = σ(θi − S(t)). Then ηi = 1
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if and only if S(t) < θi . Let the thresholds satisfy θ1 < θ2 < · · · . Thus the output
Xi,i+1(t) = ηi+1(t)− ηi(t) is equal to 1 if and only if θi < S(t) < θi+1. Knowing Xi,i+1(t) we
can restore, for large N0, the original signal by the formula

S(t) ≈
N0∑
i=1

SiXi,i+1(t) (3.1)

where Si = S(ti), ti are any points such that Xi,i+1(ti) = 1. Since z-transformation is linear, it
is now sufficient to show how the network performs z-transformations of signals taking values
0 and 1.

Let y(t) be an input signal such that y(t) = 1 or 0. Let us choose the parameters
(q+, q−, u, v) of the (P)–(D) Hebb rule as

q+ = q− = q, v = 1, q ∈ (0, 1). (3.2)

Moreover, let us take the states of the postsynaptic and presynaptic neurons as follows:

ξ(t) = 1, η(t) = y(t) (3.3)

Then, using relations (1.4), we see that a(t) + b(t) is independent of t : a(t) + b(t) =
q(η(t)ξ(t) + (1 − η(t))ξ(t)) = q. Besides a(t) = qy(t). Substituting these relations into
equation (2.7), one obtains

G(T ) = λq

T∑
t=1

y(t)zT−t = λq(y(T ) + y(T − 1)z + y(T − 2)z2 + · · ·), z = 1 − q,

(3.4)

that coincides with (1.5).
Finally, the main result of this section is as follows: if the presynaptic neuron is active

respectively to an input signal ξ(t) (in a 0–1 form) and the postsynaptic neuron is always active,
then, for large times T , the corresponding averaged synaptic efficacy is z-transformation of
the input signal (with z = 1 − q).

3.2. Computation of transformations of wavelet type

It is well known that the wavelet transform is very effective in signal processing and noise
removal. There exists a possibility of obtaining transformation (1.6) under the assumption that
�k(t) are functions well localized in t at some t = tk � T . The key idea is to use the property
B: the preprocessor generates any signals.

Following the previous approach, suppose that y(t) is an input signal with the values 1
or 0.

Let us assume that the states of the postsynaptic and presynaptic neurons are defined by,
instead of (3.3), the formula

ξ(t) = σ(Rk(t)− θ0), η(t) = y(t) (3.5)

where Rk is a special signal; θ0 ∈ N(0, δ) is a Gaussian random quantity. This relation means
that ξ = 1 if and only if Rk > θ0.

Denote by 〈X〉 the average of X. We take q−, q+, u, v as above (see (3.2)), assuming that
the constant q is small with respect to d, where the parameter d is the localization width of
Rk(t).

Observe that 〈a(t)〉 = qy(t)Prob(Rk(t) > θ0). Now we apply the property B: the
preprocessor can generate a special signal Rk(t) such that Prob(Rk(t) > θ0) = �k(t) for all
|t − tk| < Cd , where C is a large constant.
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Then, by (2.7), we have for small q and z close to 1

〈G(T )〉 ≈ λ

T∑
t=1

〈a(t)〉 = λq

T∑
t=1

y(t)�k(t), (3.6)

that coincides with (1.6).
Now we shall describe how the network can calculate the likelihoods and perform other

statistical algorithms.

3.3. Computation of likelihood

Consider a random quantityX subjected to the normal distribution with zero mean and deviation
δ. Our preprocessor can generate such X (see sections 2.3 and 2.4).

Let z be a fixed number. We put

η(X, z, ε0) = σ

(
λσ(X − z) + λσ(z + ε0 −X)− 3λ

2

)
. (3.7)

Then the average of this double sigmoid is, for small ε0,

〈η〉 = Prob((X > z) and (X < z + ε0)) ≈ ε0φ(z, δ) (3.8)

where φ(z, δ) = (
√

2πδ)−1 exp(− z2

2δ2 ) is the normal density. Recall that η from (3.8) can be
computed by a two-layered network for the time 2h (see (2.1)).

Now let z1, z2, . . . , zm be independent real quantities normally distributed according to
N(0, δ). Then the likelihood to observe given zi is

L =
m∏
k=1

φ(zk, δ). (3.9)

To compute this product, we set

η = σ(λ(η1 + η2 + · · · + ηm)− λ(m− 1/2)), (3.10)

where ηk are defined by (3.8) with z = zk . Clearly η = 1 if and only if all ηi = 1. Thus,

〈η〉 = Prob(η = 1) = εm0

m∏
k=1

φ(zk, δ). (3.11)

Finally, we see that our schema (3.8), (3.11) can be organized as a fast-working three-layered
network. Using these results, we can now consider autoregression problems.

3.4. Networks resolving autoregression model

Actual biological processors successfully resolve autoregression problems. Indeed, a cat
chasing a mouse very well foresees the mouse movements. Thus the cat processor must
effectively analyse the mouse trajectory.

Let us consider a general nonlinear autoregression model

q(t + τ) = F (q(t),a) + ε(t) (3.12)

where F is a fixed nonlinear map (that defines the mouse dynamics), τ is a discrete time step,
ε(t) is the white noise with known deviation δ and zero mean and a is a unknown vector of
parameters. Our problem is to correctly define these parameters in frameworks of the given
model (the problem of model choice is very difficult, see a brief discussion in section 6). Our
hypothesis about ε(t) is quite standard.
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To discriminate the parameters, it is natural to use the maximum-likelihood principle.
Suppose we observe actual values of the process y(tτ ), t = 1, . . . , T0 where τ is a time step.
Then the probability p(y|a) of observing this time series is the following likelihood:

L(a) =
T0∏
t=1

n∏
j=1

φ(zj (t), δ), (3.13)

where

zj (t) = yj ((t + 1)τ )− Fj (y(tτ ),a), t = 1, . . . , T0. (3.14)

The mappings y → Fj (y) can be calculated by a three-layered network for the time 3h (see
section 2). Let us set τ = 3h. As has been shown in the previous section, L from (3.13)
can be computed by a two-layered network (which obtains zj (t) as input signals). Therefore,
the likelihood (3.13) can be calculated by a forward network with five layers where y(t) is an
input.

To obtain online an optimal a, one can use the preprocessor described in section 2.5.

3.5. Random search

Consider the following question: does there exist an input q such that f (q) < c, where f is a
given scalar function?

The Hebbian processor can resolve this problem using a random search. Let a preprocessor
generate θ = f (q) by (2.6). Define the states of the presynaptic and postsynaptic neurons by

ξ(t) = σ(c − f (q(t))), η(t) = 1. (3.15)

Moreover, let us choose the parameters of the Hebb rule by

q+ = 1, q− = 0, (3.16)

and suppose that the initial value of the synapseK(0) = 0. Now we take a random input q(t),
t = 1, 2, . . . . If there exists a value t0 such that f (q(t0)) < c, the efficacy K becomes 1 at
moment t0 and conserves this value up to the final moment t = T . Otherwise K(T ) = 0.
Thus, the mean G(T ) > 0 if and only if the value q exists.

4. Memory and learning

First we shall show that this approach reveals a fundamental probabilistic interpretation of the
synaptic efficacies.

Suppose that a random sequenceO1,O2, . . . , Om of some independent objects (patterns,
time signals etc) is exposed (where m � 1). It is natural to assume that the preprocessor can
find some ‘features’ A1, A2, . . . , As of these objects. For example, we can connect with each
featureAi an output neuron ηi of the preprocessor and suppose that ηi = 1 (the neuron is fired)
if and only if an object O observed possesses the feature Ai . We shall also use an additional
neuron η0 that is always fired.

Notice that this approach is applicable to both qualitative and quantitative analysis of
objects: to estimate, for example, a continuous parameter a of an input signal, we can
decompose the domain of possible values of a into small subdomains. Thus, after such
quantization, a quantitative parameter can be replaced by a family of qualitative features
(properties).

Let us consider now two neurons ηi and ηj and calculate the mean value of the synaptic
efficacy 〈Kij 〉 = Gij . As the Hebb rule parameters, first we take

q+ = q− = q, v = 0, u = 1, q ∈ (0, 1). (4.1)
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Denote by aij = a(ηi, ηj ) and bij = b(ηi, ηj ) the quantities introduced above in section 1.2.
Let us calculate the averages 〈aij 〉 and 〈bij 〉 that we obtain after observation of our object
sequence O1,O2, . . . , Om.

Clearly, for large sequences, the mean 〈aij 〉 is

〈aij 〉 ≈ qProb(ηi(t) = 1, ηj (t) = 1) = qProb(AiAj ), (4.2)

i.e. it is proportional to the probability of observing, in our family of objects, the features Ai
and Aj together.

Using (4.1) and (1.4) we obtain that

〈aij 〉 + 〈bij 〉 = q〈ηiηj + (1 − ηi)ηj + (1 − ηj )ηi〉 = q〈ηi〉 ≈ qProb(Ai). (4.3)

Consider (2.7) and average it over all possible realizations (setting T = m). Since the terms
in (2.7) are independent for different times, we obtain (repeating calculations [4])

〈Kij (T )〉 ≈ λ
〈aij 〉

〈aij 〉 + 〈bij 〉 = λ
Prob(AiAj )

Prob(Ai)
, (T = m � 1). (4.4)

We see that this mean is proportional to the conditional probability Prob(Aj |Ai) that the
patterns have the feature Aj under the condition that they possess the feature Ai . If we take,
as a presynaptic neuron, neuron η0 (instead of ηi, i > 0), the corresponding value is the
probability of having feature Aj .

Thus, the networks can compute empirical probabilistic distribution of the parameters, find
correlations etc. This memory organization helps to analyse the structure of the objects. For
example, ifGij = 〈Kij 〉 andGji both are close to zero, this means that features (properties)Ai
andAj are, in a sense, almost uncorrelated. IfGij is close to 0 butGij is close to 1, this means
that property Ai ‘almost always’ entails Aj . One can assume that the memory organization,
naturally associated with variant (4.1) of the (P)–(D) Hebb rule, is a treelike structure, when,
to classify objects, we use a hierarchic system of features.

Let us show that the (P)–(D) Hebb rule is sufficiently flexible and can be reduced to the
classical rules [1] that also have a simple interpretation. Indeed, instead of (4.1) let us set now

q+ = q = 1

m
, q− = 0. (4.5)

Then, in (2.7), one has γ (s) = 1 and a(t) = aij (t) = qηi(t)ηj (t). Here the ‘time’ t is
actually the pattern index µ, µ = 1, 2, . . . , m. Introducing notation ηi(µ) = ηµ, we obtain
the classical Hebb rule

〈Kij (m)〉 = λm−1
m∑
µ=1

η
µ

i η
µ

j . (4.6)

Therefore, 〈Kij 〉 is proportional to the probability that the objects possess simultaneously
features Ai and Aj .

Thus, we see that this network can work in a different ways depending on the Hebb rule
parameter choice, and, in particular, as a classical attractor neural network. Notice that the
work [4] showed that this (P)–(D) Hebb rule allows us to recognize random patterns of a simple
structure without a supervisor.

5. Analysis of dynamical information by network

The following problem is also important from the biological point of view. Suppose the
network obtains a time input signal in the vector form S(t) where S ∈ Rn. Furthermore, let
data S(t) be trajectories of a noised dynamical process

S(t + 1) = Q(S(t)) + ε(t)
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where Q is a nonlinear map and ε(t) is a white noise. It is impossible to remove a true
trajectory from the observed one even if the white noise ε(t) is small [22]. However some
averaged characteristics can be found. To describe these, first let us recall some fundamental
notions of the dynamical system theory.

There exist different natural approaches to the noise removal problem; in particular, one can
approximate the process by some Markov chain with discrete states. Recall this fundamental
construction. Partition the compact phase spaceX into a finite number of nonempty connected
sets A1, A2, . . . , Ap. To form our Markov model, we identify each set Ai with the ith state
of our Markov chain. We construct an n × n transition matrix with entries Pij interpreted as
follows: Pij is the probability that a typical point in Ai moves into Aj under one iteration.

Another important dynamical characteristic is an invariant measure on the attractor called
the Bowen–Ruelle–Sinai (BRS) measure. The BRS measure of a set A is the frequency with
which orbits visit this set, namely

ν(A) = lim
T→∞

T −1
T∑
t=1

φ(A, t) (5.1)

where φ(A, t) = 1 if the point y(t) lies in A and φ = 0 otherwise.
The BRS measure (5.1) is a characteristic stable under noise. This measure can be

found [22].
Question: how can the network obtain ν(A) (where A is a compact domain in our phase

space)?
We shall show that information on ν and Pij can be written in the synaptic matrix by the

Hebb rule.
Suppose that the process is ergodic. Let us show how the Hebb rule allows us to calculate ν.
To find an approximation of ν, we split the phase space into a finite set of compact

subdomains Ak . One can assume (see [23] for details) that, for large T , a good approximation
of νk = ν(Ak) is the following quantity:

µk(T ) = T −1
T∑
t=0

φ(Ak, t) (5.2)

where φ(Ak, t) = 1 if the point S(t) in Ak and φ = 0 otherwise.
To calculate (5.2) we assume that the states ξ(t) and η(t) of the postsynaptic and

presynaptic neurons are defined by

ξ(t) = 1, η(t) = φ(Ak, t). (5.3)

(To obtain η(t) in this form, we use a preprocessor, see section 2.1.) Let us take the Hebb
parameters by (3.2) and calculateG(T ). First we notice that a(t)+b(t) ≡ q and γ (t) ≡ 1−q.
Thus we obtain

G(T ) = λq(φ(Ak, T ) + φ(Ak, T − 1)z + φ(Ak, T − 2)z2 + · · ·), z = 1 − q. (5.4)

Since our random process S(t) is ergodic, the following asymptotic holds:

αk(t, T ) =
t∑

τ=1

φ(Ak, T − τ) = µkt + o(t), (t → ∞) (5.5)

where µk are defined by (4.2), the correction o(t) � t for large t . (Indeed, αk(t, T ) is the
frequency with which our process visits Ak .) To use relation (5.5), one can apply to (5.4) the
Abel formula [36], assuming that q is small (and thus z close to 1). As a result, we obtain

G(T ) = λq(1 − z)(αk(1, T ) + αk(2, T )z + αk(3, T )z
2 + · · ·). (5.6)
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Clearly, when z = 1 − q with a small q, in this sum the main contribution is given by terms
αk(t, T ) for large t . Thus we can substitute into (5.6) asymptotic (5.5), that gives

G(T ) → λµk (T → ∞). (5.7)

Similarly one can organize calculation of the transition frequency Pij (see for definition
section 1.3). To end this, we put

ξ(t) = 1, η(t) = σ(λ(φ(Ai, t) + φ(Aj , t + 1)− 3
2 )). (5.8)

The analysis is similar and we omit it.

6. Data compression. Recognition of fractal patterns and decoding fractals

The previous sections were mainly connected with the probability theory, statistics and the
statistical information theory.

However, a simple example from the book [37] shows that the brain analyses the
information and performs data compression. Thus, to understand organization of neural
memory, we need also the algorithmic information theory [24–27]. The example is the
following. It is clear that it is simpler to remember the telephone number 345-67-89 than
the number 749-36-58 because the first sequence is increasing.

The main idea is that the ‘complexity’ of an objectOin relative to given objectsO1, . . . , Op
(that can be stored in memory, for example) is the minimal length of an algorithm that constructs
Oin from givenOk , or, otherwise, the minimal description length. For example, it is well known
now that many real fractal images and scenes actually admit a short description (see [29–31]).
So, their complexity is actually less than one may think observing these images.

We are going to demonstrate that the networks considered can serve as information
compressors. We illustrate this by an example, showing that the standard algorithms of fractal
recognition [30] can be implemented in this neuronal architecture. These algorithms have
practical applications to image compression and recognition, particularly when we must handle
online images depending on time.

In this section we recall only main ideas of the approach [30]; mathematical details can
be found in the appendix.

To describe generation of fractal patterns, we shall study special random maps. Consider
a family of maps q → F i (q), q ∈ X where X is a compact in Rn. Let, moreover, each map
F i be a contraction. Such a family is called an iterated function system (IFS) [29]. We can use
this IFS to construct a mappingW from the space of compact subsets ofX into itself. Namely,
let us define

W(B) =
m⋃
i=1

fi(B), B ⊂ X. (6.1)

Then W is a contraction map with respect to the Hausdorff metric (see the appendix). In
this setting W admits a unique fixed point; that is, there is exactly one nonempty compact set
A ⊂ X such that W(A) = A. This set is the attractor of the IFS.

We can use IFS to compress visual information presented as 0–1 (black–white) images
(a point q ∈ R2 is black, if q ∈ W ). To achieve this goal, one often applies IFS consisting
of contracting linear maps. For example, the well known Kantor set [35] is an attractor of the
IFS on the interval [0, 1] defined by the two maps f1 : x → x/3 and f2 : x → (x + 2)/3. If
a fractal image can be written to memory as an attractor of some IFS, much information can
be saved. In fact, to write the Kantor set in memory in details immediately, bits by bits, we
must use a number of bits. Using the IFS allows us to remember only the number of linear
applications and their parameters.
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An implementation of IFS in the networks considered can be made by results of section 2.3
and the appendix. It essentially exploits the fact that the preprocessor can generate a number
of complicated dynamics.

However, a number of questions remain without answers. A typical very difficult question
is the following. This approach is based on an a priori hypothesis that fractals are attractors
of corresponding IFSs. However, there exist many different models of fractal objects [31].
If an algorithm of the fractal coding is known a priori, up to unknown parameters, it is not
difficult to find these parameters. However, how do we find this algorithm itself? Otherwise,
how does the network form its model of the object? How does the network find the shortest
model description?

These problems are very complex and we shall not discuss them here (see e.g. [27, 38]).

7. Concluding remarks

The main conclusion of this paper is the following: synaptic plasticity based on the Hebb rule
from [4] (see section 1.2) is a powerful instrument allowing us to support many fundamental
statistical and computational algorithms. This rule is the simplest consistent with some
experiments and theoretical approaches. The main idea of this approach is to use multilayered
networks as an effective preprocessor. Thus this model can be described as a combination of
multilayered perceptrons and attractor neural networks.

We have not discussed here some important algorithms such as effective Monte Carlo
Bayes approaches (for example, Metropolis and simulated annealing algorithms) [39] or the
hidden Markov chains. They can probably also be implemented in our model.
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Appendix

To implement in our model the fractal decoding algorithm, we need the following auxiliary
instruments: (a) an algorithm of the comparison of two sets (which, for example, can be
interpreted as two visual images); (b) the method of fractal generation.

(a) Let us define the distance between the subsets A and B in R2 by the Hausdorff metric

dH (A,B) = max{d(A,B), d(B,A)}, d(A,B) = max
x∈A

min
y∈B

d(x,y). (A.1)

Actually we are dealing with discrete data. Let us represent the plane R2 as a great two-
dimensional lattice, say, consisting of M = m × m points. Thus we have M different points
xi .

Let us now describe a procedure checking the condition d(A,B) < ε. We check the
following equivalent condition: for each xi ∈ A there exists a point yj ∈ B such that
d(xi ,yj ) < ε.
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Our network uses (1) a preprocessor calculating the distance d(x,y) between two points
and (2) two preprocessors with 0–1 outputs ηA and ηB computing the characteristic functions
χA(x) and χB(y).

Now we construct a three-layered network as follows. The first two layers generate the
signals

ηi = σ

(
λ

M∑
j=1

σ(ε − d(xi ,yj ))− λ

2

)
(A.2)

(operation ‘or’). These signals enter for the third layer consisting of a single neuron

ξ = σ

(
λ

M∑
i=1

ηi − λ
M − 1

2

)
(A.3)

(operation ‘and’). It is clear that ξ = 1 only if all ηi = 1, and thus, for each xi ∈ A there
exists a point yj ∈ B such that d(xi ,yj ) < ε.

Notice that this calculation will be fast (it takes time 3h) only if the degree of connectivity
NC of our network (1.1) is more than M (i.e. each neuron is connected with a maximum of
NC > M neighbours).

(b) Let us show that a network of great size and with a fixed synaptic matrix can generate
a number of dynamics (depending on the thresholds). More precisely, given a finite family of
maps F i (q), where i = 1, 2, . . . , m, one can find networks simulating all these maps. The
synaptic matrix K i ≡ K is the same for all the maps, while θ are, in general, different. To
simplify, let us assume that we have a scalar input q = q ∈ [0, 1] and that the output F lies in
the same interval [0, 1].

Let us illustrate the main idea of this construction by an example. Consider two maps
q → f1(q) and q → f2(q) from [0, 1] to [0, 1] (here the continuous input q ∈ [0, 1]). Let
us construct a network simulating these two maps. The input and output of this network are
continuous and lie in [0, 1].

By these maps, we define the map f from [0, 2] to [0, 1] as follows: if q ∈ [0, 1] then
f (q) = f1(q); if q ∈ [1, 2], one sets f = f2(q − 1). There exists a network simulating
this discontinuous map (see section 2). The corresponding input lies in [0, 2] while the output
lies in [0, 1]. The synaptic matrix and the thresholds are fixed, but our construction is not yet
complete since the input lies in [0, 2] (instead of [0, 1]).

However, this network can be replaced by two networks with the same synaptic matrix,
the input and the output from [0, 1], and different thresholds. In fact, the argument q ∈ [1, 2]
can be shifted into interval [0, 1] by a shift of the thresholds. Indeed, formula (2.1) shows that
the shift of the argument q is equivalent to a shift of thresholds ai and bi .

Implementation of the fractal decoding algorithm

Now we describe how a sufficiently large neural network can solve the fractal decoding
problem. An approach to this problem is based on the so-called collage theorem [29]. Suppose
that a set A′ is found such that

dH

(
A′,

m⋃
i=1

f i(A)

)
< ε0. (A.4)

Then for small ε0 this set is sufficiently close to the actual attractor A, namely

dH (A
′, A) < cε0, (A.5)

where c is a constant depending on our IFS.
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Consider a family of maps F i , i = 1, 2, . . . , m. Choosing a multi-index I =
{i1, i2, . . . , il} (where l � m) one has the IFS formed by the maps F is , s = 1, . . . , l. Each
such IFS (and thus the corresponding fractal) can be obtained according to (b), by a choice of
thresholds in our network.

If the number l of the maps in the IFS is a priori restricted by some value r < m (many
realistic pictures can be obtained with small l = 2, 3, 4, see [29]), the maximal number M of
possible fractals is polynomial: M = mr . Notice that some fractals can be trivial or similar to
others, thus actually M < mr , but all the fractals can be generated in a great network (1.1).

Consider now the following problem: given set A′, close to a fractal from this family of
fractals, to find IFS that generate it.

The solution is based on the results of part (a) (see (A.1)–(A.3)). We can construct
preprocessors that calculate the characteristic functions of the given setA′ and the set B that is
the union of the images f is (A) for is ∈ I . Using this, we can organize an algorithm checking
condition (A.4) as follows.

Let us take a sufficiently small ε0. Furthermore, step by step, we sort out different multi-
indices I . This corresponds to an exhaustive search by adjusting different thresholds (or, which
is the same, different inputs) of the network. At each step, the network checks (A.4) by the
preprocessors described above.

The efficiency of this neuronal implementation depends on the connectivity of the network.
Suppose for instance that the connectivity NC has order 104. Then this algorithm works
effectively for planar images of size 100 × 100. Thus, for large images, the procedure must
be complicated. Following [30], we can split a large picture into small local parts, 100 × 100,
and apply the method to each part.
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